192 research outputs found

    Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching

    Get PDF
    In this paper, we prove that a stochastic logistic population under regime switching controlled by a Markov chain is either stochastically permanent or extinctive, and we obtain the sufficient and necessary conditions for stochastic permanence and extinction under some assumptions. In the case of stochastic permanence we estimate the limit of the average in time of the sample path of the solution by two constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems of the population model. Finally, we illustrate our conclusions through two examples

    Existence and uniqueness of solutions for singular fourth-order boundary value problems

    Get PDF
    AbstractBy mixed monotone method, the existence and uniqueness are established for singular fourth-order boundary value problems. The theorems obtained are very general and complement previous known results

    Dynamical Behavior of the Stochastic Delay Mutualism System

    Get PDF
    We discuss the dynamical behavior of the stochastic delay three-specie mutualism system. We develop the technique for stochastic differential equations to deal with the asymptotic property. Using it we obtain the existence of the unique positive solution, the asymptotic properties, and the nonpersistence. Finally, we give the numerical examinations to illustrate our results

    Population dynamical behavior of Lotka-Volterra system under regime switching

    Get PDF
    In this paper, we investigate a Lotka-Volterra system under regime switching dx(t) = diag(x1(t); : : : ; xn(t))[(b(r(t)) + A(r(t))x(t))dt + (r(t))dB(t)]; where B(t) is a standard Brownian motion. The aim here is to find out what happens under regime switching. We first obtain the sufficient conditions for the existence of global positive solutions, stochastic permanence and extinction. We find out that both stochastic permanence and extinction have close relationships with the stationary probability distribution of the Markov chain. The limit of the average in time of the sample path of the solution is then estimated by two constants related to the stationary distribution and the coefficients. Finally, the main results are illustrated by several examples

    What is second-order vision for? Discriminating illumination versus material changes

    Get PDF
    The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benet from second-order sensitivity. Analysis of the first-and second-order contents of natural images suggests that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based on initially separate first-and second-order channels that are combined within orientation and subsequently across orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LM-AM when presented in a plaid. Thus, the model sees LM -AM as flat in these circumstances. We conclude that second-order vision plays a key role in disambiguating the origin of luminance changes within an image. © ARVO
    • …
    corecore